RELATION

Definition of relation:

A relation between two non-empty sets is a collection of ordered pairs, containing one object from each set.

Let \mathcal{R} be a relation from set A to set B. Then $\mathcal{R}=\{(x, y) \mid x \in A$ and $y \in B\}$

If \mathcal{R} be a relation from set A to set B and $(x, y) \in \mathcal{R}$ [where $x \in A$ and $y \in B$]
then we can write this as $x \mathcal{R} y$. From the definition of relation, we can easily guess that $\mathcal{R} \subseteq$ $A \times B$

Note: If it is said that \mathcal{R} be a relation on set A only, we pre-assume that $\mathcal{R} \subseteq A \times A$
A relation from set A to set B is any subset of $A \times B$. Let $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$. Then maximum number of possible relations from set A to set $B=$ number of subsets of $A \times B=2^{p q}$

Example-1: Let $A=\{1,2,3,4\}, B=\{1,2,3,5\}$ and \mathcal{R} is a relation defined from set A to set B where $(x, y) \in \mathcal{R} \Rightarrow x>y$. Find \mathcal{R}

Solution: $A \times B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,5),(2,1),(2,2),(2,3),(2,5), \\ (3,1),(3,2),(3,3),(3,5),(4,1),(4,2),(4,3),(4,5)\end{array}\right\}$

As, $(x, y) \in \mathcal{R} \Rightarrow x>y$ and $\mathcal{R} \subseteq A \times B$

So, $\mathcal{R}=\{(2,1),((3,1),(3,2),(4,1),(4,2),(4,3)\}$

Domain \& Range of Relation:

Domain: If \mathcal{R} be a relation from set A to set B, then domain of \mathcal{R} is defined by the set $\{x \mid(x, y) \in \mathcal{R}\}$

Range: If \mathcal{R} be a relation from set A to set B, then range of \mathcal{R} is defined is defined by the set $\{y \mid(x, y) \in \mathcal{R}\}$

In our above example 1 , domain of $\mathcal{R}=\{2,3,4\}$ and range of $\mathcal{R}=\{1,2,3\}$
Example-2: Let $A=\{2,3,4,5\}, B=\{6,8,10,30\}$ and \mathcal{R} is a relation defined from set A to set B where $(x, y) \in \mathcal{R} \Rightarrow x$ is relatively prime to y. Find \mathcal{R} and its domain, range.

Solution: $\mathcal{R}=\{(3,8),(3,10),(5,6),(5,8)\}$. Domain of $\mathcal{R}=\{3,5\}$ and range of $\mathcal{R}=$ $\{6,8,10\}$

Different types of Relation:

Inverse Relation: Let ρ be a relation from set A to set B. Every such relation has an inverse relation, which is denoted by ρ^{-1}. Then ρ^{-1} is a relation from set B to set A. If $\rho=\{(x, y) \mid x \in A$ and $y \in B\}$, then $\rho^{-1}=\{(y, x) \mid(x, y) \in \rho\}$. In example 2 , $\mathcal{R}^{-1}=\{(8,3),(10,3),(6,5),(8,5)\}$. We see that domain of $\mathcal{R}=$ range of \mathcal{R}^{-1} and range of $\mathcal{R}=$ domain of \mathcal{R}^{-1}
$>$ Empty Relation: Let ρ be a relation from set A to set B. If $\rho=\phi$ (i.e. null set), then the relation is called an empty relation. E.g. let $A=\{1,3\}$ and $B=\{5,7\}$. Then $\rho=$ $\{(a, b) \mid a \in A, b \in B \& a \times b$ is an even number $\}$ is an empty relation from A to B.
 relation is called a universal relation. E.g. let $A=\{1,3\}$ and $B=\{5,7\}$. Then $\rho=$ $\{(1,5),(1,7),(3,5),(3,7)\}$ is a universal relation from set A to B.

Identity Relation: Let A be a non-empty set. An identity relation on set A is denoted by I_{A} and is defined by $I_{A}=\{(a, b): a=b \forall a, b \in A\}$. E.g. in set $A=\{1,2,3\}$ then $\rho=$ $\{(1,1),(2,2),(3,3)\}$ is an identity relation, but $\rho=\{(1,1),(2,2)\}$ isn't an identity relation because $(3,3) \notin \rho$. Again $\left.\rho_{1}=\{(1,1),(2,2),(1,2)\},(3,3)\right\}$ isn't an identity relation because $(1,2) \in \rho_{1}$

Reflexive Relation: Let A be a non-empty set. A relation ρ defined on a set A, is called a reflexive relation, if $(a, a) \in \rho \forall a \in A$
E.g. let $A=\{1,2,3\}$ and three relations defined on this set are following $R_{1}=\{(1,1),(2,2),(3,3)\}, R_{2}=\{(1,1),(2,2),(3,3),(1,2)\}, R_{3}=\{(1,1),(2,2)\}$

Here R_{1} is both identity \& reflexive relation. R_{2} is reflexive but not an identity relation as $(1,2) \in R_{2} . R_{3}$ is neither reflexive nor identity relation as $(3,3) \notin R_{3}$. We see that all identity relation is reflexive but all reflexive relation is not an identity relation.

Symmetric Relation: Let A be a non-empty set. A relation ρ defined on a set A, is called a symmetric relation, if $(a, b) \in \rho \Rightarrow(b, a) \in \rho$ when $a, b \in A$
E.g. let $A=\{1,2,3\}$ and three relations defined on this set are following $R_{1}=\{(1,1),(2,2),(3,3)\}$,
$R_{2}=\{(1,1),(2,2),(2,1),(1,2)\}$,
$R_{3}=\{(1,1),(2,2),(1,2),(2,1),(1,3)\}$
R_{1} is both identity \& symmetric relation.
R_{2} is symmetric but not an identity [as, $(1,2),(2,1) \in R_{2}$] and reflexive relation [as $\left.(3,3) \notin R_{2}\right]$
R_{3} is not symmetric as $(3,1) \notin R_{3}$

Note: (i) All identity \& universal relations in a non-empty set A are always symmetric.
(ii) Let ρ be a relation in a non-empty set A. ρ is symmetric if and only if $\rho=\rho^{-1}$
> Transitive Relation: Let A be a non-empty set. A relation ρ defined on a set A, is called a transitive relation, if and only if $a \rho b$ and $b \rho c$ implies $a \rho c$ [i.e. $(a, b) \in \rho$ and $(b, c) \in$ $\rho \Rightarrow(a, c) \in \rho]$
E.g. Let ρ be a relation in set \mathbb{R} defined by $\rho=\{(x, y): x>y \forall x, y \in \mathbb{R}\}$ is a transitive relation.
E.g. let $A=\{1,2,3\}$ and three relations defined on this set are following $R_{1}=\{(1,1),(2,2),(3,3)\}$,
$R_{2}=\{(1,1),(2,2),(3,3),(1,2)\}$,
$R_{3}=\{(1,1),(2,1),(1,2)\}$
Here R_{1} is identity, reflexive, symmetric \& transitive relation.
R_{2} is reflexive, transitive, but not identity [as, $(1,2) \in R_{2}$], not symmetric [as $(2,1) \notin$ R_{2}]
R_{3} is not transitive, as $(2,1) \in R_{3},(1,2) \in R_{3}$ but $(2,2) \notin R_{3}$

Equivalence Relation: Let A be a non-empty set. A relation ρ defined on a set A, is called an equivalence relation, if ρ is reflexive, symmetric \& transitive.
E.g. let L be a set of all straight lines drawn on a plane and a relation ρ in set L is defined by $l_{1} \rho l_{2} \Rightarrow l_{1} \| l_{2}$. Here ρ is an equivalence relation. All identity relations are equivalence relations.

Congruence modulo \mathbf{m} : Let \mathbb{Z} be a set of all integers and m be a fixed positive integer. If $a, b \in \mathbb{Z}$ then a, b is said to be congruence modulo m, if $a-b$ is divisible by m and it is denoted by $a \equiv b(\bmod m)$.

So, $a \equiv b(\bmod m) \Rightarrow a-b$ is divisible by m
E.g. $22 \equiv 1(\bmod 7)$ as, $22-1=21$ is divisible by 7

But, $22 \not \equiv 1(\bmod 5)$ as, $22-1=21$ is NOT divisible by 5 .

