RELATION

Definition of relation:

A relation between two non-empty sets is a collection of ordered pairs, containing one object from each set.

Let \mathcal{R} be a relation from set A to set B. Then $\mathcal{R} = \{(x, y) \mid x \in A \text{ and } y \in B\}$

If \mathcal{R} be a relation from set A to set B and $(x, y) \in \mathcal{R}$ [where $x \in A$ and $y \in B$]

then we can write this as $x \mathcal{R} y$. From the definition of relation, we can easily guess that $\mathcal{R} \subseteq A \times B$

Note: If it is said that \mathcal{R} be a relation on set A only, we pre-assume that $\mathcal{R} \subseteq A \times A$

A relation from set A to set B is any subset of $A \times B$. Let n(A) = p and n(B) = q, then $n(A \times B) = pq$. Then maximum number of possible relations from set A to set B = number of subsets of $A \times B = 2^{pq}$

<u>Example - 1</u>: Let $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3, 5\}$ and \mathcal{R} is a relation defined from set A to set B where $(x, y) \in \mathcal{R} \Rightarrow x > y$. Find \mathcal{R}

Solution: $A \times B = \{(1,1), (1,2), (1,3), (1,5), (2,1), (2,2), (2,3), (2,5), (3,1), (3,2), (3,3), (3,5), (4,1), (4,2), (4,3), (4,5)\}$

As, $(x, y) \in \mathcal{R} \Rightarrow x > y$ and $\mathcal{R} \subseteq A \times B$

So, $\mathcal{R} = \{(2,1), ((3,1), (3,2), (4,1), (4,2), (4,3)\}$

Domain & Range of Relation:

Domain: If \mathcal{R} be a relation from set A to set B, then domain of \mathcal{R} is defined by the set $\{x \mid (x, y) \in \mathcal{R}\}$

Range: If \mathcal{R} be a relation from set A to set B, then range of \mathcal{R} is defined is defined by the set $\{y \mid (x, y) \in \mathcal{R}\}$

In our above example 1, domain of $\mathcal{R} = \{2, 3, 4\}$ and range of $\mathcal{R} = \{1, 2, 3\}$

<u>Example – 2</u>: Let $A = \{2, 3, 4, 5\}$, $B = \{6, 8, 10, 30\}$ and \mathcal{R} is a relation defined from set A to set B where $(x, y) \in \mathcal{R} \Rightarrow x$ is relatively prime to y. Find \mathcal{R} and its domain, range.

Solution: $\mathcal{R} = \{(3,8), (3,10), (5,6), (5,8)\}$. Domain of $\mathcal{R} = \{3,5\}$ and range of $\mathcal{R} = \{6, 8, 10\}$

Different types of Relation:

- Inverse Relation: Let ρ be a relation from set A to set B. Every such relation has an inverse relation, which is denoted by ρ⁻¹. Then ρ⁻¹ is a relation from set B to set A.
 If ρ = {(x, y) | x ∈ A and y ∈ B}, then ρ⁻¹ = {(y, x) | (x, y) ∈ ρ}. In example 2, R⁻¹ = {(8,3), (10,3), (6,5), (8,5)}. We see that domain of R = range of R⁻¹ and range of R = domain of R⁻¹
- ► <u>Empty Relation</u>: Let ρ be a relation from set A to set B. If $\rho = \phi$ (i.e. null set), then the relation is called an empty relation. E.g. let $A = \{1, 3\}$ and $B = \{5, 7\}$. Then $\rho = \{(a, b) \mid a \in A, b \in B \& a \times b \text{ is an even number}\}$ is an empty relation from A to B.
- → <u>Universal Relation</u>: Let ρ be a relation from set A to set B. If $\rho = A \times B$, then the relation is called a universal relation. E.g. let $A = \{1,3\}$ and $B = \{5,7\}$. Then $\rho = \{(1,5), (1,7), (3,5), (3,7)\}$ is a universal relation from set A to B.
- ✓ Identity Relation: Let A be a non-empty set. An identity relation on set A is denoted by I_A and is defined by I_A = {(a, b) : a = b ∀a, b ∈ A}. E.g. in set A = {1, 2, 3} then ρ = {(1,1), (2,2), (3,3)} is an identity relation, but ρ = {(1,1), (2,2)} isn't an identity relation because (3,3) ∉ ρ. Again ρ₁ = {(1,1), (2,2), (1,2)}, (3,3)} isn't an identity relation because (1,2) ∈ ρ₁

➤ <u>Reflexive Relation</u>: Let A be a non-empty set. A relation ρ defined on a set A, is called a reflexive relation, if $(a, a) \in \rho \quad \forall a \in A$

E.g. let $A = \{1, 2, 3\}$ and three relations defined on this set are following –

$$R_1 = \{(1,1), (2,2), (3,3)\}, R_2 = \{(1,1), (2,2), (3,3), (1,2)\}, R_3 = \{(1,1), (2,2)\}$$

Here R_1 is both identity & reflexive relation. R_2 is reflexive but not an identity relation as $(1,2) \in R_2$. R_3 is neither reflexive nor identity relation as $(3,3) \notin R_3$. We see that all identity relation is reflexive but all reflexive relation is not an identity relation.

- Symmetric Relation: Let A be a non-empty set. A relation ρ defined on a set A, is called a symmetric relation, if $(a, b) \in \rho \Rightarrow (b, a) \in \rho$ when $a, b \in A$
 - E.g. let $A = \{1, 2, 3\}$ and three relations defined on this set are following –

 $R_1 = \{(1,1), (2,2), (3,3)\},$

 $R_2 = \{(1,1), (2,2), (2,1), (1,2)\},\$

 $R_3 = \{(1,1), (2,2), (1,2), (2,1), (1,3)\}$

 R_1 is both identity & symmetric relation.

 R_2 is symmetric but not an identity [as, (1,2), (2,1) $\in R_2$] and reflexive relation [as

 $(3,3) \notin R_2$]

 R_3 is not symmetric as $(3,1) \notin R_3$

Note: (i) All identity & universal relations in a non-empty set A are always symmetric.

(ii) Let ρ be a relation in a non-empty set A. ρ is symmetric if and only if $\rho = \rho^{-1}$

➤ <u>Transitive Relation</u>: Let A be a non-empty set. A relation ρ defined on a set A, is called a transitive relation, if and only if $a\rho b$ and $b\rho c$ implies $a\rho c$ [i.e. $(a, b) \in \rho$ and $(b, c) \in \rho$

 $\rho \Rightarrow (a,c) \in \rho$]

E.g. Let ρ be a relation in set \mathbb{R} defined by $\rho = \{(x, y) : x > y \ \forall x, y \in \mathbb{R}\}$ is a transitive relation.

E.g. let $A = \{1, 2, 3\}$ and three relations defined on this set are following –

 $R_1 = \{(1,1), (2,2), (3,3)\},\$

 $R_2 = \{(1,1), (2,2), (3,3), (1,2)\},\$

 $R_3 = \{(1,1), (2,1), (1,2)\}$

Here R_1 is identity, reflexive, symmetric & transitive relation.

 R_2 is reflexive, transitive, but not identity [as, (1,2) $\in R_2$], not symmetric [as (2,1) $\notin R_2$]

 R_3 is not transitive, as $(2,1) \in R_3$, $(1,2) \in R_3$ but $(2,2) \notin R_3$

> <u>Equivalence Relation</u>: Let A be a non-empty set. A relation ρ defined on a set A, is called an equivalence relation, if ρ is reflexive, symmetric & transitive.

E.g. let *L* be a set of all straight lines drawn on a plane and a relation ρ in set *L* is defined by $l_1\rho l_2 \Rightarrow l_1 \parallel l_2$. Here ρ is an equivalence relation. All identity relations are equivalence relations.

Congruence modulo m: Let \mathbb{Z} be a set of all integers and m be a fixed positive integer. If $a, b \in \mathbb{Z}$ then a, b is said to be *congruence modulo* m, if a - b is divisible by m and it is denoted by $a \equiv b \pmod{m}$.

So, $a \equiv b \pmod{m} \Rightarrow a - b$ is divisible by m

E.g. $22 \equiv 1 \pmod{7}$ as, 22 - 1 = 21 is divisible by 7

But, $22 \not\equiv 1 \pmod{5}$ as, 22 - 1 = 21 is NOT divisible by 5.