Complex Number জটিল রাশি

Definition of Complex Number

If x and y are any two real numbers (বাস্তব সংখ্যা) then

z = x + iy is called a **complex number** (জটিল রাশি) where $i = \sqrt{-1}$

We can also express the complex number, z as

$$z = x + iy = (x, y)$$

i is called Fundamental Imaginary Unit (কাল্পনিক সংখ্যার মূল একক)। $i^2 = -1$

z = x + iy where x is called <u>Real Part</u> (বাস্তব অংশ) of z and y is called <u>Imaginary Part</u> (কাল্পনিক অংশ) of z. We write x and y as following: x = Re(z) and y = Im(z)

When $x \neq 0$ and y = 0, then z is called "*Purely Real*" (বিশুদ্ধ বাস্তব) as in this case, z = x

When x = 0 and $y \neq 0$, then z is called "*Purely Imaginary*" (বিশুদ্ধ কাল্পনিক) as in this case, z = iy

Equality of Two Complex Numbers (দুটি জটিল রাশির সমতা)

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are any two complex numbers, where x_1, y_1, x_2, y_2 are real numbers.

$$z_1=z_2$$
 if and only if (যদি এবং কেবলমাত্র যদি) $x_1=x_2$ and $y_1=y_2$

Let z = x + iy is a complex number. Then x - iy is called conjugate

complex number of z and it is written as \overline{z} i.e. $\overline{z} = x - iy$

Let z_1 and z_2 are two complex numbers. Then

$$\overline{\overline{z_1}} = z_1, (\overline{z_1 + z_2}) = \overline{z_1} + \overline{z_2}, (\overline{z_1 \cdot z_2}) = \overline{z_1} \cdot \overline{z_2}, \overline{\left(\frac{\overline{z_1}}{\overline{z_2}}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

Addition, Subtraction, Multiplication & Division of two Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are any two complex numbers, where x_1, y_1, x_2, y_2 are real numbers.

•
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) = (x_1 + x_2, y_1 + y_2)$$

•
$$z_1 - z_2 = (x_1 + iy_1) - (x_2 + iy_2) = (x_1 - x_2) + i(y_1 - y_2) =$$

 $(x_1 - x_2, y_1 - y_2)$

•
$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

as $i^2 = -1$

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2}$$

$$=\frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}$$

$$=\frac{x_1x_2 - i^2y_1y_2 + i(x_2y_1 - x_1y_2)}{x_2^2 - i^2y_2^2}$$

$$=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2}$$

Argand Diagram

A Complex Number doesn't appear anywhere on a real number line and so wouldn't appear in coordinates in xyplane. This problem was solved by Jean-Robert Argand. An Argand diagram uses the real and imaginary parts of a complex number as analogues of x and y in the Cartesian plane. The area of an Argand diagram is called the complex plane by mathematicians.

MODULUS OF A COMPLEX NUMBER

$$\begin{aligned} |z_1 \cdot z_2| &= |z_1| \cdot |z_2| \\ \left| \frac{z_1}{z_2} \right| &= \frac{|z_1|}{|z_2|} \quad z\bar{z} = |z|^2 \end{aligned}$$

Let O be the origin of argand diagram & P be a point on complex plane, which represents the complex number z = x + iy = (x, y)

Then the distance between O & P = $|\overline{OP}|$ =

 $\sqrt{x^2 + y^2}$ is called the modulus of complex number of z and it is denoted by |z| or mod(z)

$$\therefore |z| = |\overline{OP}| = \sqrt{x^2 + y^2}$$

Remember that |z| is always positive real number.

Amplitude / Argument of a Complex Number

Amplitude / Argument of a Complex Number

The angle is called the Amplitude or Argument of z and is denoted by **Arg (z)** or **Amp (z)**, and has <u>infinite values</u>. However, the unique value of θ lying between $-\pi < \theta \le \pi$, is called principal value of Arg (z) / Amp (z) , and is denoted by **arg (z)** or **amp (z)**

Amp (z) = amp (z) $+2n\pi$ where *n* is integer.

Modulus-Amplitude Form of a Complex Number

Modulus of z = r. From figure,

$$\cos \theta = \frac{x}{r}$$
 and $\sin \theta = \frac{y}{r}$

i.e. $x = r \cos \theta$ and $y = r \sin \theta$ where θ is amplitude of z. We know that

 $z = x + iy = r\cos\theta + i \cdot r\sin\theta$

 $z = r(\cos \theta + i \sin \theta)$. This form of z is known as modulus-amplitude form as it contains both the modulus (r) and amplitude (θ) .

Geometrical Representation of Complex Numbers

Geometrically, addition of two complex numbers z_1 and z_2 can be visualized as addition of the vectors by using the "*parallelogram law*".

The vector sum z_1 and z_2 is represented by the diagonal of the parallelogram formed by the two original vectors.

From figure, $|z_1 + z_2| \le |z_1| + |z_2|$

Geometrical Representation of Complex Numbers

Geometrically, subtraction of two complex numbers z_1 and z_2 can be visualized as addition of the vectors z_1 and $-z_2$ by using the "parallelogram law".

From figure, $|z_1 - z_2|$ represents the distance between two points, which are represented by complex numbers z_1 and z_2 .

From figure, $|z_1 - z_2| \le |z_1| + |z_2|$

Difference between **REAL NUMBER** & **COMPLEX NUMBER**

In mathematics, the law of **trichotomy** states that every real number is either positive, negative, or zero.

So, if a & b be any two real numbers, then from the above law, we can say that either a > b or a < b or a = b

But in Complex number, this law is not holds good. E.g. if z_1 and z_2 are two complex numbers, we can't say that $z_1 > z_2$ or $z_1 < z_2$ Because, in complex number,

 $i = \sqrt{-1}$ is neither positive nor negative nor zero. Why?

Let, *i* > 0

Multiplying both sides by *i*, we get

 $i \cdot i > 0 \cdot i \Longrightarrow -1 > 0$ which is not possible. So $i \ge 0$

Let, *i* < 0

Multiplying both sides by i, we get $i \cdot i > 0 \cdot i \Longrightarrow -1 > 0$ which is not possible. So i < 0

So, *law of trichotomy* not holds for Complex Numbers.

De Moivre's Theorem

From De Moivre's theorem, we can say that if 'n' be any rational number, positive or negative, then

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$