Complex Number জটিল রাশি

Definition of Complex Number

If x and y are any two real numbers (বাসুব সংথ্যা) then
$z=x+i y$ is called a complex number (জটিল রাশি) where $i=\sqrt{-1}$
We can also express the complex number, z as
$z=x+i y=(x, y)$
i is called Fundamental Imaginary Unit (কাল্পনিক সংখ্যার মূল একক)।
$i^{2}=-1$
$z=x+i y$ where x is called Real Part (বাম্তু অংশ) of z and y is called Imaginary Part (কাল্পনিক অংশ) of z. We write x and y as following:
$x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$

When $x \neq 0$ and $y=0$, then z is called "Purely Real" (বিশুদ্ধ বাস্তু) as in this case, $z=x$

When $x=0$ and $y \neq 0$, then z is called "Purely Imaginary" (বিশুদ্ধ কাল্পনিক) as in this case, $z=i y$

Equality of Two Complex Numbers (দুটি ऊটিল রাশির সমতা)

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are any two complex numbers, where $x_{1}, y_{1}, x_{2}, y_{2}$ are real numbers.
$z_{1}=z_{2}$ if and only if (यদি এবং কেবলমাত্র যদি) $x_{1}=x_{2}$ and $y_{1}=y_{2}$

Conjugate Complex Number (অनুবন্ধী জটিল রাশি)

Let $z=x+i y$ is a complex number. Then $x-i y$ is called conjugate
complex number of z and it is written as \bar{z} i.e. $\bar{z}=x-i y$
Let z_{1} and z_{2} are two complex numbers. Then

$$
\overline{\overline{z_{1}}}=z_{1},\left(\overline{z_{1}+z_{2}}\right)=\overline{z_{1}}+\overline{z_{2}},\left(\overline{z_{1} \cdot z_{2}}\right)=\overline{z_{1}} \cdot \overline{z_{2}}, \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}
$$

Addition, Subtraction, Multiplication \& Division of two Complex Numbers

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are any two complex numbers, where $x_{1}, y_{1}, x_{2}, y_{2}$ are real numbers.

$$
\begin{aligned}
& \cdot z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
& \cdot \\
& z_{1}-z_{2}=\left(x_{1}+i y_{1}\right)-\left(x_{2}+i y_{2}\right)=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)= \\
& \quad\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \\
& \cdot \\
& z_{1} \cdot z_{2}=\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
& \text { as } i^{2}=-1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{z_{1}}{z_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}} \\
& =\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{\left(x_{2}+i y_{2}\right)\left(x_{2}-i y_{2}\right)} \\
& =\frac{x_{1} x_{2}-i^{2} y_{1} y_{2}+i\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}-i^{2} y_{2}^{2}} \\
& =\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}
\end{aligned}
$$

Argand Diagram

A Complex Number doesn't appear anywhere on a real number line and so wouldn't appear in coordinates in $x y$ plane. This problem was solved by JeanRobert Argand. An Argand diagram uses the real and imaginary parts of a complex number as analogues of x and y in the Cartesian plane. The area of an Argand diagram is called the complex plane by mathematicians.

MODULUS OF A COMPLEX NUMBER

$$
\begin{aligned}
& \left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \\
& \left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \quad z \bar{z}=|z|^{2}
\end{aligned}
$$

Let O be the origin of argand diagram \& P be a point on complex plane, which represents the complex number $z=x+i y=(x, y)$
Then the distance between $\mathrm{O} \& \mathrm{P}=|\overline{O P}|=$ $\sqrt{x^{2}+y^{2}}$ is called the modulus of complex number of z and it is denoted by $|z|$ or $\bmod (z)$

$$
\therefore|z|=|\overline{O P}|=\sqrt{x^{2}+y^{2}}
$$

Remember that $|z|$ is always positive real number.

Amplitude / Argument of a Complex Number

Amplitude / Argument of a Complex Number

The angle is called the Amplitude or
Argument of z and is denoted by $\operatorname{Arg}(z)$ or Amp (z), and has infinite values. However, the unique value of θ lying between $-\pi<\theta \leq \pi$, is called principal value of $\operatorname{Arg}(z) / \operatorname{Amp}(z)$, and is denoted by $\arg (z)$ or $\operatorname{amp}(z)$
$\operatorname{Amp}(z)=\operatorname{amp}(z)+2 n \pi$ where n is integer.

Modulus-Amplitude Form of a Complex Number

Modulus of $z=r$. From figure, $\cos \theta=\frac{x}{r}$ and $\sin \theta=\frac{y}{r}$
i.e. $x=r \cos \theta$ and $y=r \sin \theta$ where θ is amplitude of z. We know that
$z=x+i y=r \cos \theta+i \cdot r \sin \theta$
$z=r(\cos \theta+i \sin \theta)$. This form of z is known as modulus-amplitude form as it contains both the modulus (r) and amplitude (θ).

Geometrical Representation of Complex Numbers

Geometrically, addition of two complex numbers z_{1} and z_{2} can be visualized as addition of the vectors by using the "parallelogram law".

The vector sum z_{1} and z_{2} is represented by the diagonal of the parallelogram formed by the two original vectors.

From figure, $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$

Geometrical Representation of Complex Numbers

Geometrically, subtraction of two complex numbers z_{1} and z_{2} can be visualized as addition of the vectors z_{1} and $-z_{2}$ by using the "parallelogram law".

From figure, $\left|z_{1}-z_{2}\right|$ represents the distance between two points, which are represented by complex numbers z_{1} and z_{2}.
From figure, $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$

Difference between REAL NUMBER \& COMPLEX NUMBER

In mathematics, the law of trichotomy states that every real number is either positive, negative, or zero.

So, if $a \& b$ be any two real numbers, then from the above law, we can say that either $a>b$ or $a<b$ or $a=b$

But in Complex number, this law is not holds good. E.g. if z_{1} and z_{2} are two complex numbers, we can't say that $z_{1}>z_{2}$ or $z_{1}<z_{2}$

Because, in complex number, $i=\sqrt{-1}$ is neither positive nor negative nor zero. Why?
Let, $i>0$
Multiplying both sides by i, we get
$i \cdot i>0 \cdot i \Longrightarrow-1>0$ which is not possible. So $i \ngtr 0$
Let, $i<0$
Multiplying both sides by i, we get $i \cdot i>0 \cdot i \Longrightarrow-1>0$ which is not possible. So $i \nless 0$
So, law of trichotomy not holds for Complex Numbers.

De Moivre's Theorem

From De Moivre's theorem, we can say that if ' n ' be any rational number, positive or negative, then

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

